
+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

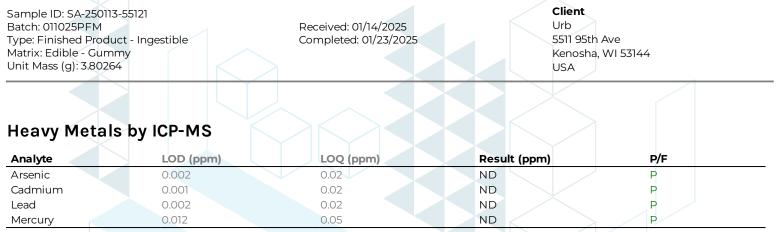
1 of 7

Urb 100mg D8/D9 Passionfruit Margarita

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; RL = Reporting Limit; Δ = Delta; Total Δ9-THC = Δ9-THCA * 0.877 + Δ9-THC; Total CBD = CBDA * 0.877 + CBD;

Generated By: Ryan Bellone CCO Date: 01/23/2025

Tested By: Scott Caudill Laboratory Manager Date: 01/23/2025



+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

2 of 7

Urb 100mg D8/D9 Passionfruit Margarita

kca

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit; Values over action limits may be estimates

Generated By: Ryan Bellone CCO Date: 01/23/2025

Tested By: Chris Farman

ested By: Chris Farmar Scientist Date: 01/17/2025

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

3 of 7

Urb 100mg D8/D9 Passionfruit Margarita

Sample ID: SA-250113-55121 Batch: 011025PFM Type: Finished Product - Ingestible Matrix: Edible - Gummy Unit Mass (g): 3.80264

Received: 01/14/2025 Completed: 01/23/2025 Client Urb 5511 95th Ave Kenosha, WI 53144 USA

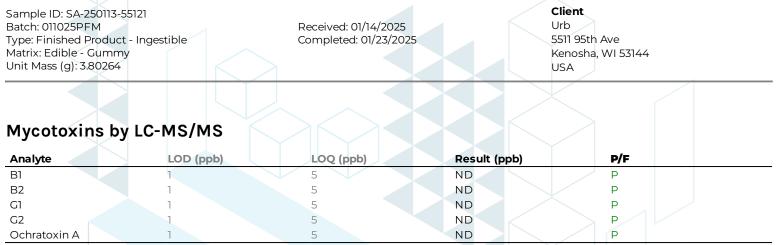
Pesticides by LC-MS/MS and GC-MS/MS

Analyte	LOD (ppb)	LOQ (ppb)	Result (ppb)	P/F	Analyte	LOD (ppb)	LOQ (ppb)	Result (ppb)	P/F
Abamectin	30	100	ND	P	Hexythiazox	30	100	ND	Р
Acephate	30	100	ND	Ρ	Imazalil	30	100	ND	Р
Acetamiprid	30	100	ND	Р	Imidacloprid	30	100	ND	Р
Aldicarb	30	100	ND	Р	Kresoxim methyl	30	100	ND	Р
Azoxystrobin	30	100	ND	Р	Metalaxyl	30	100	ND	Р
Bifenazate	30	100	ND	Ρ	Methiocarb	30	100	ND	Р
Bifenthrin	30	100	ND	P	Methomyl	30	100	ND	Р
Boscalid	30	100	ND	Р	Mevinphos	30	100	ND	Ρ
Carbaryl	30	100	ND	Ρ	Myclobutanil	30	100	ND	Р
Carbofuran	30	100	ND	Р	Naled	30	100	ND	Р
Chloranthraniliprole	30	100	ND	Р	Oxamyl	30	100	ND	Р
Chlorfenapyr	30	100	ND	Р	Paclobutrazol	30	100	ND	Р
Chlorpyrifos	30	100	ND	Р	Permethrin	30	100	ND	Р
Clofentezine	30	100	ND	Ρ	Phosmet	30	100	ND	Р
Coumaphos	30	100	ND	Ρ	Piperonyl Butoxide	30	100	ND	Р
Cypermethrin	30	100	ND	Ρ	Propiconazole	30	100	ND	Р
Daminozide	30	100	ND	Ρ	Propoxur	30	100	ND	Р
Diazinon	30	100	ND	Ρ	Pyrethrins	30	100	ND	Р
Dichlorvos	30	100	ND	Ρ	Pyridaben	30	100	ND	Р
Dimethoate	30	100	ND	Ρ	Spinetoram	30	100	ND	Р
Dimethomorph	30	100	ND	Ρ	Spinosad	30	100	ND	Р
Ethoprophos	30	100	ND	Р	Spirotetramat	30	100	ND	Р
Etofenprox	30	100	ND	Р	Spiroxamine	30	100	ND	Р
Etoxazole	30	100	ND	Р	Tebuconazole	30	100	ND	Ρ
Fenhexamid	30	100	ND	Р	Thiacloprid	30	100	ND	Р
Fenoxycarb	30	100	ND	P	Thiamethoxam	30	100	ND	Ρ
Fenpyroximate	30	100	ND	Р	Trifloxystrobin	30	100	ND	Ρ
Fipronil	30	100	ND	P					
Flonicamid	30	100	ND	Р					
Fludioxonil	30	100	ND	P					

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit; Values over action limits may be estimates

Generated By: Ryan Bellone CCO Date: 01/23/2025

Tested By: Anthony Mattingly Scientist Date: 01/22/2025



+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

4 of 7

Urb 100mg D8/D9 Passionfruit Margarita

kca

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit; Values over action limits may be estimates

Generated By: Ryan Bellone CCO Date: 01/23/2025

Tested By: Anthony Mattingly Scientist

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

5 of 7

Urb 100mg D8/D9 Passionfruit Margarita

Sample ID: SA-250113-55121 Batch: 011025PFM Type: Finished Product - Ingestible Matrix: Edible - Gummy Unit Mass (g): 3.80264		ed: 01/14/2025 eted: 01/23/2025	Client Urb 5511 95th Ave Kenosha, WI 5314 USA	4	
		\sim			
Microbials by PCR and Pla		Pesult (CEU/a)	Pesult (Qualitative)	D/F	
Analyte	LOD (CFU/g)	Result (CFU/g)	Result (Qualitative)	P/F	
Analyte Total aerobic count	LOD (CFU/g)	ND	Result (Qualitative)		
Analyte	LOD (CFU/g)		Result (Qualitative)	P	
Analyte Total aerobic count Total coliforms	LOD (CFU/g) 10 10	ND ND	Result (Qualitative)	P P	

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; CFU = Colony Forming Units; P = Pass; F = Fail; RL = Reporting Limit

Generated By: Ryan Bellone CCO Date: 01/23/2025

Tested By: Sara Cook

Tested By: Sara Cook Laboratory Technician Date: 01/17/2025

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

6 of 7

Urb 100mg D8/D9 Passionfruit Margarita

Sample ID: SA-250113-55121 Batch: 011025PFM Type: Finished Product - Ingestible Matrix: Edible - Gummy Unit Mass (g): 3.80264

Received: 01/14/2025 Completed: 01/23/2025 Client Urb 5511 95th Ave Kenosha, WI 53144 USA

Residual Solvents by HS-GC-MS

Analyte	LOD (ppm)	LOQ (ppm)	Result (ppm)	P/F	Analyte	LOD (ppm)	LOQ (ppm)	Result (ppm)	P/F
Acetone	167	500	ND	P	Ethylene Oxide	0.5		ND	
Acetonitrile	14	41	ND	P	Heptane	167	500	ND	P
Benzene	0.5	1	ND	Р	n-Hexane	10	29	ND	Р
Butane	167	500	ND	Р	Isobutane	167	500	ND	Р
1-Butanol	167	500	ND	Р	Isopropyl Acetate	167	500	ND	Р
2-Butanol	167	500	ND	Р	Isopropyl Alcohol	167	500	ND	Р
2-Butanone	167	500	ND	Р	Isopropylbenzene	167	500	ND	Ρ
Chloroform	2	6	ND	P	Methanol	100	300	ND	Ρ
Cyclohexane	129	388	ND	Р	2-Methylbutane	10	29	ND	Ρ
1,2-Dichloroethane	0.5	1	ND	Ρ	Methylene Chloride	20	60	ND	Ρ
1,2-Dimethoxyethane	4	10	ND	Р	2-Methylpentane	10	29	ND	Ρ
Dimethyl Sulfoxide	167	500	ND	Р	3-Methylpentane	10	29	ND	Ρ
N,N-Dimethylacetamide	37	109	ND	Р	n-Pentane	167	500	ND	Ρ
2,2-Dimethylbutane	10	29	ND	Р	1-Pentanol	167	500	ND	Ρ
2,3-Dimethylbutane	10	29	ND	Р	n-Propane	167	500	ND	Ρ
N,N-Dimethylformamide	30	88	ND	Р	1-Propanol	167	500	ND	Ρ
2,2-Dimethylpropane	167	500	ND	Р	Pyridine	7	20	ND	Ρ
1,4-Dioxane	13	38	ND	Р	Tetrahydrofuran	24	72	ND	Ρ
Ethanol	167	500	ND	Р	Toluene	30	89	ND	Ρ
2-Ethoxyethanol	6	16	ND	Р	Trichloroethylene	3	8	ND	Ρ
Ethyl Acetate	167	500	ND	Р	Xylenes (o-, m-, and p-)	73	217	ND	Ρ
Ethyl Ether	167	500	ND	Р					
Ethylbenzene	3	7	ND	Р					

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit; Values over action limits may be estimates

Generated By: Ryan Bellone CCO Date: 01/23/2025

Tested By: Kelsey Rogers Scientist

Date: 01/23/2025 Date: 01/17/2025 Date:

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

Pesticides - CA DCC

7 of 7

Urb 100mg D8/D9 Passionfruit Margarita

Sample ID: SA-250113-55121 Batch: 011025PFM Type: Finished Product - Ingestible Matrix: Edible - Gummy Unit Mass (g): 3.80264

Received: 01/14/2025 Completed: 01/23/2025

Client

Urb 5511 95th Ave Kenosha, WI 53144 USA

Reporting Limit Appendix

Heavy Metals - KY 902 KAR 45:190

Analyte	Limit (ppm)	Analyte	Limit (ppm)
Arsenic	1.5	Lead	0.5
Cadmium	0.5	Mercury	1.5

Microbials -

Analyte	Limit (CFU/ g) Analyte	Limit (CFU/ g)
Total coliforms	100 Total aerobic count	10000

Residual Solvents - USP 467

Analyte	Limit (ppm)	Analyte	Limit (ppm)
Acetone	5000	Ethylene Oxide	1
Acetonitrile	410	Heptane	5000
Benzene	2	n-Hexane	290
Butane	5000	Isobutane	5000
1-Butanol	5000	Isopropyl Acetate	5000
2-Butanol	5000	Isopropyl Alcohol	5000
2-Butanone	5000	Isopropylbenzene	5000
Chloroform	60	Methanol	3000
Cyclohexane	3880	2-Methylbutane	290
1,2-Dichloroethane	5	Methylene Chloride	600
1,2-Dimethoxyethane	100	2-Methylpentane	290
Dimethyl Sulfoxide	5000	3-Methylpentane	290
N,N-Dimethylacetamide	1090	n-Pentane	5000
2,2-Dimethylbutane	290	1-Pentanol	5000
2,3-Dimethylbutane	290	n-Propane	5000
N,N-Dimethylformamide	880	1-Propanol	5000
2,2-Dimethylpropane	5000	Pyridine	200
1,4-Dioxane	380	Tetrahydrofuran	720
Ethanol	5000	Toluene	890
2-Ethoxyethanol	160	Trichloroethylene	80
Ethyl Acetate	5000	Xylenes (o-, m-, and p-)	2170
Ethyl Ether	5000		
Ethylbenzene	70		

Pesticides	- CA DCC
------------	----------

Analyte	Limit (ppb)	Analyte	Limit (ppb)
Abamectin	300	Hexythiazox	2000
Acephate	5000	Imazalil	30

Analyte	Limit (ppb)	Analyte	Limit (ppb)
Acetamiprid	5000	Imidacloprid	3000
Aldicarb	30	Kresoxim methyl	1000
Azoxystrobin	40000	Metalaxyl	15000
Bifenazate	5000	Methiocarb	30
Bifenthrin	500	Methomyl	100
Boscalid	10000	Mevinphos	30
Carbaryl	500	Myclobutanil	9000
Carbofuran	30	Naled	500
Chloranthraniliprole	40000	Oxamyl	200
Chlorfenapyr	30	Paclobutrazol	30
Chlorpyrifos	30	Permethrin	20000
Clofentezine	500	Phosmet	200
Coumaphos	30	Piperonyl Butoxide	8000
Cypermethrin	1000	Propiconazole	20000
Daminozide	30	Propoxur	30
Diazinon	200	Pyrethrins	1000
Dichlorvos	30	Pyridaben	3000
Dimethoate	30	Spinetoram	3000
Dimethomorph	20000	Spinosad	3000
Ethoprophos	30	Spirotetramat	13000
Etofenprox	30	Spiroxamine	30
Etoxazole	1500	Tebuconazole	2000
Fenhexamid	10000	Thiacloprid	30
Fenoxycarb	30	Thiamethoxam	4500
Fenpyroximate	2000	Trifloxystrobin	30000
Fipronil	30		
Flonicamid	2000		
Fludioxonil	30000		

Mycotoxins - Colorado CDPHE

Analyte	Limit (ppb) Analyte	Limit (ppb)
B1	5 B2	5
G1	5 G2	5
Ochratoxin A	5	

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

1 of 7

Urb 100mg D8/D9 Island Peach

kca

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; RL = Reporting Limit; Δ = Delta; Total Δ 9-THC = Δ 9-THCA * 0.877 + Δ 9-THC; Total CBD = CBDA * 0.877 + CBD;

Generated By: Ryan Bellone CCO Date: 01/23/2025

Tested By: Scott Caudill Laboratory Manager Date: 01/23/2025

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

2 of 7

Urb 100mg D8/D9 Island Peach

kca

Sample ID: SA-25011 Batch: 011025IP Type: Finished Produ Matrix: Edible - Gum Unit Mass (g): 4.11176	uct - Ingestible my	Received: 01/14/2025 Completed: 01/23/2025	Client Urb 5511 95th Kenosha USA	Ave , WI 53144
Heavy Metal Analyte	s by ICP-MS	LOQ (ppm)	Result (ppm)	P/F
	-	LOQ (ppm) 0.02	Result (ppm)	P/F
Analyte	LOD (ppm)			Р/F Р Р
Analyte Arsenic	LOD (ppm) 0.002	0.02	ND	Р/F Р Р Р

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit; Values over action limits may be estimates

Generated By: Ryan Bellone CCO Date: 01/23/2025

Tested By: Chris Farman

ested By: Chris Farmar Scientist Date: 01/17/2025

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

3 of 7

Urb 100mg D8/D9 Island Peach

Sample ID: SA-250113-55119 Batch: 011025IP Type: Finished Product - Ingestible Matrix: Edible - Cummy Unit Mass (g): 4.11176

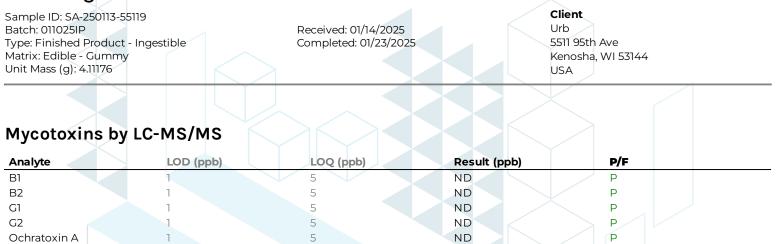
Received: 01/14/2025 Completed: 01/23/2025 Client Urb 5511 95th Ave Kenosha, WI 53144 USA

Pesticides by LC-MS/MS and GC-MS/MS

Analyte	LOD (ppb)	LOQ (ppb)	Result (ppb)	P/F	Analyte	LOD (ppb)	LOQ (ppb)	Result (ppb)	P/F
Abamectin	30	100	ND	Ρ	Hexythiazox	30	100	ND	Ρ
Acephate	30	100	ND	Ρ	Imazalil	30	100	ND	Ρ
Acetamiprid	30	100	ND	Р	Imidacloprid	30	100	ND	Ρ
Aldicarb	30	100	ND	Р	Kresoxim methyl	30	100	ND	Ρ
Azoxystrobin	30	100	ND	Р	Malathion	30	100	ND	Ρ
Bifenazate	30	100	ND	Р	Metalaxyl	30	100	ND	Ρ
Bifenthrin	30	100	ND	P	Methiocarb	30	100	ND	Ρ
Boscalid	30	100	ND	Р	Methomyl	30	100	ND	Ρ
Carbaryl	30	100	ND	Ρ	Mevinphos	30	100	ND	Ρ
Carbofuran	30	100	ND	Р	Myclobutanil	30	100	ND	Ρ
Chloranthraniliprole	30	100	ND	Р	Naled	30	100	ND	Ρ
Chlorfenapyr	30	100	ND	Р	Oxamyl	30	100	ND	Ρ
Chlorpyrifos	30	100	ND	Р	Paclobutrazol	30	100	ND	Ρ
Clofentezine	30	100	ND	Р	Permethrin	30	100	ND	Ρ
Coumaphos	30	100	ND	Р	Phosmet	30	100	ND	Ρ
Daminozide	30	100	ND	Р	Piperonyl Butoxide	30	100	ND	Ρ
Diazinon	30	100	ND	Р	Propiconazole	30	100	ND	Ρ
Dichlorvos	30	100	ND	Р	Propoxur	30	100	ND	Ρ
Dimethoate	30	100	ND	Р	Pyrethrins	30	100	ND	Ρ
Dimethomorph	30	100	ND	Р	Pyridaben	30	100	ND	Ρ
Ethoprophos	30	100	ND	Р	Spinetoram	30	100	ND	Ρ
Etofenprox	30	100	ND	Р	Spinosad	30	100	ND	Ρ
Etoxazole	30	100	ND	Р	Spiromesifen	30	100	ND	Ρ
Fenhexamid	30	100	ND	Р	Spirotetramat	30	100	ND	Ρ
Fenoxycarb	30	100	ND	Р	Spiroxamine	30	100	ND	Ρ
Fenpyroximate	30	100	ND	Р	Tebuconazole	30	100	ND	Ρ
Fipronil	30	100	ND	Р	Thiacloprid	30	100	ND	Ρ
Flonicamid	30	100	ND	P	Thiamethoxam	30	100	ND	Ρ
Fludioxonil	30	100	ND	Р	Trifloxystrobin	30	100	ND	Ρ

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit; Values over action limits may be estimates

Generated By: Ryan Bellone CCO Date: 01/23/2025


Tested By: Anthony Mattingly Scientist Date: 01/22/2025

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

Urb 100mg D8/D9 Island Peach

kca

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit; Values over action limits may be estimates

Generated By: Ryan Bellone CCO Date: 01/23/2025

Tested By: Anthony Mattingly Scientist

Date: 01/22/2025 Date:

1

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

Ρ

5 of 7

Urb 100mg D8/D9 Island Peach

Sample ID: SA-250113-55119 Batch: 011025IP Type: Finished Product - Ingestible Matrix: Edible - Gummy Jnit Mass (g): 4.11176		ed: 01/14/2025 eted: 01/23/2025	Client Urb 5511 95th Ave Kenosha, WI 53144 USA	
Microbials by PCR and P			Pocult (Qualitativo)	D/E
Analyte	LOD (CFU/g)	Result (CFU/g)	Result (Qualitative)	P/F
Analyte Total aerobic count	LOD (CFU/g)	ND	Result (Qualitative)	P
Analyte	LOD (CFU/g)		Result (Qualitative)	-
Analyte Total aerobic count	LOD (CFU/g)	ND	Result (Qualitative)	P

Not Detected per 1 gram

Shiga-toxin producing E. coli (STEC)

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; CFU = Colony Forming Units; P = Pass; F = Fail; RL = Reporting Limit

Generated By: Ryan Bellone CCO Date: 01/23/2025

Tested By: Sara Cook

Tested By: Sara Cook Laboratory Technician Date: 01/17/2025

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

6 of 7

Urb 100mg D8/D9 Island Peach

Sample ID: SA-250113-55119 Batch: 011025IP Type: Finished Product - Ingestible Matrix: Edible - Gummy Unit Mass (g): 4.11176

Received: 01/14/2025 Completed: 01/23/2025 Client Urb 5511 95th Ave Kenosha, WI 53144 USA

Residual Solvents by HS-GC-MS

						\sim			
Analyte	LOD (ppm)	LOQ (ppm)	Result (ppm)	P/F	Analyte	LOD (ppm)	LOQ (ppm)	Result (ppm)	P/F
Acetone	167	500	ND	P	Ethylene Oxide	0.5	1	ND	Р
Acetonitrile	14	41	ND	Ρ	Heptane	167	500	ND	P
Benzene	0.5	1	ND	Ρ	n-Hexane	10	29	ND	Ρ
Butane	167	500	ND	Р	Isobutane	167	500	ND	Ρ
1-Butanol	167	500	ND	Р	Isopropyl Acetate	167	500	ND	Ρ
2-Butanol	167	500	ND	Р	Isopropyl Alcohol	167	500	ND	Ρ
2-Butanone	167	500	ND	Ρ	Isopropylbenzene	167	500	ND	Ρ
Chloroform	2	6	ND	Р	Methanol	100	300	ND	Ρ
Cyclohexane	129	388	ND	Р	2-Methylbutane	10	29	ND	Ρ
1,2-Dichloroethane	0.5	1	ND	Ρ	Methylene Chloride	20	60	ND	Ρ
1,2-Dimethoxyethane	4	10	ND	Р	2-Methylpentane	10	29	ND	Ρ
Dimethyl Sulfoxide	167	500	ND	Р	3-Methylpentane	10	29	ND	Ρ
N,N-Dimethylacetamide	37	109	ND	Р	n-Pentane	167	500	ND	Ρ
2,2-Dimethylbutane	10	29	ND	Р	1-Pentanol	167	500	ND	Ρ
2,3-Dimethylbutane	10	29	ND	Р	n-Propane	167	500	ND	Ρ
N,N-Dimethylformamide	30	88	ND	Р	1-Propanol	167	500	ND	Ρ
2,2-Dimethylpropane	167	500	ND	Р	Pyridine	7	20	ND	Ρ
1,4-Dioxane	13	38	ND	Р	Tetrahydrofuran	24	72	ND	Ρ
Ethanol	167	500	ND	Р	Toluene	30	89	ND	Ρ
2-Ethoxyethanol	6	16	ND	Р	Trichloroethylene	3	8	ND	Ρ
Ethyl Acetate	167	500	ND	Р	Xylenes (o-, m-, and p-)	73	217	ND	Р
Ethyl Ether	167	500	ND	Р					
Ethylbenzene	3	7	ND	Р					

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit; Values over action limits may be estimates

Generated By: Ryan Bellone CCO Date: 01/23/2025

Tested By: Kelsey Rogers

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

Pesticides - CA DCC

7 of 7

Urb 100mg D8/D9 Island Peach

Sample ID: SA-250113-55119 Batch: 0110251P Type: Finished Product - Ingestible Matrix: Edible - Gummy Unit Mass (g): 4.11176

Received: 01/14/2025 Completed: 01/23/2025

Client Urb

5511 95th Ave Kenosha, WI 53144 USA

Reporting Limit Appendix

Heavy Metals - KY 902 KAR 45:190

Analyte	Limit (p	pm) Analyte	Limit (ppm)
Arsenic	1.5	Lead	0.5
Cadmium	0.5	Mercury	1.5

Microbials -

Analyte	Limit (CFU/ g) Analyte	Limit (CFU/ g)
Total coliforms	100 Total aerobic count	10000

Residual Solvents - USP 467

Analyte	Limit (ppm)	Analyte	Limit (ppm)
Acetone	5000	Ethylene Oxide	1
Acetonitrile	410	Heptane	5000
Benzene	2	n-Hexane	290
Butane	5000	Isobutane	5000
1-Butanol	5000	Isopropyl Acetate	5000
2-Butanol	5000	Isopropyl Alcohol	5000
2-Butanone	5000	Isopropylbenzene	5000
Chloroform	60	Methanol	3000
Cyclohexane	3880	2-Methylbutane	290
1,2-Dichloroethane	5	Methylene Chloride	600
1,2-Dimethoxyethane	100	2-Methylpentane	290
Dimethyl Sulfoxide	5000	3-Methylpentane	290
N,N-Dimethylacetamide	1090	n-Pentane	5000
2,2-Dimethylbutane	290	1-Pentanol	5000
2,3-Dimethylbutane	290	n-Propane	5000
N,N-Dimethylformamide	880	1-Propanol	5000
2,2-Dimethylpropane	5000	Pyridine	200
1,4-Dioxane	380	Tetrahydrofuran	720
Ethanol	5000	Toluene	890
2-Ethoxyethanol	160	Trichloroethylene	80
Ethyl Acetate	5000	Xylenes (o-, m-, and p-)	2170
Ethyl Ether	5000		
Ethylbenzene	70		

Pesticides - CA DCC

Analyte	Limit (ppb)	Analyte	Limit (ppb)
Abamectin	300	Hexythiazox	2000
Acephate	5000	Imazalil	30

Analyte	Limit (ppb)	Analyte	Limit (ppb)
Acetamiprid	5000	Imidacloprid	3000
Aldicarb	30	Kresoxim methyl	1000
Azoxystrobin	40000	Malathion	5000
Bifenazate	5000	Metalaxyl	15000
Bifenthrin	500	Methiocarb	30
Boscalid	10000	Methomyl	100
Carbaryl	500	Mevinphos	30
Carbofuran	30	Myclobutanil	9000
Chloranthraniliprole	40000	Naled	500
Chlorfenapyr	30	Oxamyl	200
Chlorpyrifos	30	Paclobutrazol	30
Clofentezine	500	Permethrin	20000
Coumaphos	30	Phosmet	200
Daminozide	30	Piperonyl Butoxide	8000
Diazinon	200	Propiconazole	20000
Dichlorvos	30	Propoxur	30
Dimethoate	30	Pyrethrins	1000
Dimethomorph	20000	Pyridaben	3000
Ethoprophos	30	Spinetoram	3000
Etofenprox	30	Spinosad	3000
Etoxazole	1500	Spiromesifen	12000
Fenhexamid	10000	Spirotetramat	13000
Fenoxycarb	30	Spiroxamine	30
Fenpyroximate	2000	Tebuconazole	2000
Fipronil	30	Thiacloprid	30
Flonicamid	2000	Thiamethoxam	4500
Fludioxonil	30000	Trifloxystrobin	30000

Mycotoxins - Colorado CDPHE

Analyte	Limit (ppb) Analyte	Limit (ppb)
B1	5 B2	5
G1	5 G2	5
Ochratoxin A	5	

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

1 of 7

Urb 100mg D8/D9 Blue Watermelon

ample ID: SA-250113-55120 Batch: 011025BW ype: Finished Product - Inge Aatrix: Edible - Gummy Jnit Mass (g): 4.16279	estible	Received: 01/14 Completed: 01/1		Client Urb 5511 95th Ave Kenosha, WI 5 USA	53144
			Summar	V	
			Test	Date Tested	Status
			Cannabinoids	01/23/2025	Tested
			Heavy Metals	01/17/2025	Passed
	A Star		Microbials	01/17/2025	Passed
	1 1 1 1 1 A		Mycotoxins	01/22/2025	Passed
			Pesticides Residual Solve	01/22/2025 ents 01/17/2025	Passed Passed
			Residual Solve	01/17/2025	Passed
0.223 % Total Δ9-THC	2.14 %	2.43 %	Not Tested	Not Tested	Yes Internal Standard
Total 29-THC	∆8-THC	Total Cannabinoids	Moisture Content	Foreign Matter	
Cannabinoids by				Pesult	Result
Analyte	HPLC-PDA ar LOD (%)		LOQ (%) 00284	Result (%)	Result (mg/unit)
Analyte	LOD (%)	5 0.	(%)	(%)	Result (mg/unit)
BC BCA	LOD (%) 0.0009	5 O. 1 O.	(%) 00284	(%) ND	Result (mg/unit) ND
BC BCA BCV	LOD (%) 0.0009 0.0018	5 0. 1 0. 5 0	(%) 00284 00543	(%) ND ND	Result (mg/unit) ND ND
BC BCA BCV BD	LOD (%) 0.0009 0.0018 0.0006	5 0. 1 0. 5 (3)	(%) 00284 00543 0.0018	(%) ND ND ND	Result (mg/unit) ND ND ND ND
BC BCA BCV BD BDA	LOD (%) 0.0009 0.0018 0.0006 0.0008	5 0. 1 0. 5 0. 1 0. 3 0. 3 0.	(%) 00284 00543 0.0018 00242	(%) ND ND ND <loq< td=""><td>Result (mg/unit) ND ND ND <loq< td=""></loq<></td></loq<>	Result (mg/unit) ND ND ND <loq< td=""></loq<>
Analyte BC BCA BCV BD BDA BDV BDVA	LOD (%) 0.0009 0.0018 0.0006 0.0008 0.0004 0.0006 0.0002	5 0. 1 0. 5 0. 1 0. 5 0. 1 0. 3 0. 3 0. 1 0.	(%) 00284 00543 0.0018 00242 0.0013 .00182 00063	(%) ND ND <loq ND ND ND ND ND</loq 	Result (mg/unit) ND ND ND <loq ND ND ND ND ND</loq
Analyte BC BCA BCV BD BDA BDV BDVA BDVA BC	LOD (%) 0.0009 0.0018 0.0008 0.0008 0.0004 0.0006 0.0002 0.0002 0.0005	5 0. 1 0. 5 0. 1 0. 5 0. 3 0. 3 0. 1 0. 7 0. 7 00	(%) 00284 00543 0.0018 00242 0.0013 .00182 00063 .00172	(%) ND ND <loq ND ND ND ND ND ND</loq 	Result (mg/unit) ND ND ND <loq ND ND ND ND ND ND</loq
Analyte BC BCA BCV BD BDA BDV BDVA BDVA BC BCA	LOD (%) 0.0009 0.0018 0.0008 0.0004 0.0004 0.0002 0.0002 0.0005 0.0005	5 0. 1 0. 5 0. 1 0. 5 0. 1 0. 5 0. 1 0. 7 0. 9 0	(%) 00284 00543 0.0018 00242 0.0013 00182 00063 .00172 .00147	(%) ND ND <loq ND ND ND ND ND ND ND ND ND</loq 	Result (mg/unit) ND ND ND <loq ND ND ND ND ND ND ND ND</loq
Analyte BC BCA BCV BD BDA BDV BDVA BDVA BC BCA BCA BL	LOD (%) 0.0009 0.0018 0.0008 0.0004 0.0004 0.0002 0.0002 0.0005 0.0004 0.0004 0.0004	5 0. 1 0. 5 0. 1 0. 5 0. 1 0. 5 0. 1 0. 7 0. 7 0. 9 0. 2 0. 0	(%) 00284 00543 0.0018 00242 0.0013 00182 00063 00172 00147 .00335	(%) ND ND VD VD VD ND ND ND ND VD VD VD VD VD VD VD VD	Result (mg/unit) ND ND ND <loq ND ND ND ND ND ND ND ND <loq< td=""></loq<></loq
Analyte BC BCA BCV BD BDA BDV BDVA BDVA BC BCA BCA BL BLA	LOD (%) 0.0009 0.0018 0.0008 0.0004 0.0004 0.0002 0.0005 0.0005 0.0004 0.0012 0.0012	5 0. 1 0. 5 0. 1 0. 5 0. 1 0. 3 0. 3 0. 1 0. 7 0. 9 0. 2 0. 4 0. 1 0.	(%) 00284 00543 0.0018 00242 0.0013 00063 .00172 .00147 .00335 .00371	(%) ND ND <loq ND ND ND ND ND <loq ND</loq </loq 	Result (mg/unit) ND
BC BC BCA BCV BD BDA BDA BDV BDVA BDVA BCA BCA BL BLA BN	LOD (%) 0.0009 0.0018 0.0004 0.0004 0.0002 0.0002 0.0005 0.0004 0.0012 0.0012 0.0012 0.0012 0.0012	5 0. 1 0. 5 0. 1 0. 5 0. 1 0. 5 0. 1 0. 7 0. 7 0. 9 0. 2 0. 4 0. 6 0. 0 0.	(%) 00284 00543 00018 00242 00013 00182 00063 00172 00147 00335 .00371 .00169	(%) ND ND ND ND ND ND ND ND ND ND	Result (mg/unit) ND ND ND <loq< td=""> ND ND ND <loq< td=""> ND ND <loq< td=""> ND <loq< td=""> ND 0.133</loq<></loq<></loq<></loq<>
Analyte BC BCA BCV BD BDA BDA BDV BDVA BC BCA BCA BL BLA BN BNA	LOD (%) 0.0009 0.0018 0.0006 0.0008 0.0004 0.0002 0.0005 0.0005 0.0012 0.0012 0.0012 0.0012 0.0005	5 0. 1 0. 5 0. 3 0. 3 0. 3 0. 7 0. 9 0. 2 0. 4 0. 6 0. 5 0.	(%) 00284 00543 00018 00242 00013 00182 00063 00172 00147 00335 .00371 .00169 .00181	(%) ND ND ND <loq ND ND ND ND <loq ND 0.00320 ND</loq </loq 	Result (mg/unit) ND ND ND <loq< td=""> ND ND ND <loq< td=""> ND 0.133 ND</loq<></loq<>
Analyte BC BCA BCV BD BDA BDA BDV BDVA BC BCA BCA BL BLA BN BNA BT	LOD (%) 0.0009 0.0018 0.0004 0.0004 0.0002 0.0005 0.0005 0.0012 0.0012 0.0012 0.0012 0.0012 0.0005 0.0005 0.0005 0.0005	5 0. 1 0. 5 0. 3 0. 3 0. 3 0. 3 0. 3 0. 7 0. 9 0. 2 0. 4 0. 6 0. 5 0. 3 0.	(%) 00284 00543 00018 00242 00013 00182 00063 00172 00147 00335 .00371 .00169 .00181 0.0054	(%) ND ND ND <loq ND ND ND ND <loq ND ND 0.00320 ND ND ND</loq </loq 	Result (mg/unit) ND ND ND <loq< td=""> ND ND ND <loq< td=""> ND ND</loq<></loq<>
Analyte BC BCA BCV BD BDA BDA BDV BDVA BDV BDVA BC BCA BL BLA BLA BN BNA BT 44,8-iso-THC	LOD (%) 0.0009 0.0018 0.0006 0.0004 0.0002 0.0005 0.0005 0.0004 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0005 0.0005 0.0005 0.0005	5 0. 1 0. 5 0. 3 0. 3 0. 3 0. 3 0. 3 0. 3 0. 7 0. 9 0. 2 0. 4 0. 6 0. 5 0. 7 0. 7 0. 7 0. 7 0. 7 0.	(%) 00284 00543 00018 00242 00013 00182 00063 00172 00147 00335 .00371 .00169 .00181 0.0054 0.002	(%) ND ND ND <loq ND ND ND ND <loq ND 0.00320 ND ND 0.0546</loq </loq 	Result (mg/unit) ND ND ND <loq< td=""> ND 227</loq<>
Analyte BC BCA BCV BD BDA BDA BDV BDVA BDV BDVA BC BCA BL BLA BLA BN BNA BT 44,8-iso-THC 8-iso-THC	LOD (%) 0.0009 0.0018 0.0006 0.0004 0.0002 0.0005 0.0005 0.0005 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005	5 0. 1 0. 5 0. 3 0. 3 0. 3 0. 3 0. 3 0. 3 0. 3 0. 7 0. 9 0. 2 0. 4 0. 6 0. 5 0. 7 0. 7 0.	(%) 00284 00543 00018 00242 0013 00182 00063 00172 00147 00335 00371 00169 00181 00054 0.002	(%) ND ND ND CLOQ ND ND ND ND ND CLOQ ND ND ND ND 0.00320 ND ND 0.0546 0.00400	Result (mg/unit) ND ND ND <loq< td=""> ND <loq< td=""> ND <loq< td=""> ND <loq< td=""> ND 0.133 ND ND 227 0.167</loq<></loq<></loq<></loq<>
Analyte BC BCA BCA BCV BDA BDA BDA BDV BDVA BDV BDVA BC BCA BL BLA BLA BNA BNA BT 44,8-iso-THC 8-iso-THC 8-THC	LOD (%) 0.0009 0.0018 0.0006 0.0004 0.0002 0.0005 0.0005 0.0005 0.0005 0.0012 0.0012 0.0012 0.0012 0.0012 0.0005 0.0006 0.0012 0.0006 0.0012 0.0006 0.0012	5 0. 1 0. 5 0. 3 0. 3 0. 3 0. 3 0. 3 0. 3 0. 3 0. 3 0. 3 0. 7 0. 9 0. 2 0. 4 0. 5 0. 7 <td>(%) 00284 00543 00018 00242 00013 00182 00063 00172 00147 00335 00071 00069 000181 00054 0.002 0.002 0.00312</td> <td>(%) ND ND ND ND ND ND ND ND ND ND</td> <td>Result (mg/unit) ND ND ND <loq< td=""> ND ND ND <loq< td=""> ND 0.133 ND 227 0.167 89.2</loq<></loq<></td>	(%) 00284 00543 00018 00242 00013 00182 00063 00172 00147 00335 00071 00069 000181 00054 0.002 0.002 0.00312	(%) ND ND ND ND ND ND ND ND ND ND	Result (mg/unit) ND ND ND <loq< td=""> ND ND ND <loq< td=""> ND 0.133 ND 227 0.167 89.2</loq<></loq<>
Analyte BC BC BCA BCV BD BDA BDV BDV BDVA BDV BDVA BC BC BCA BL BLA BLA BLA BNA BNA BT A4,8-iso-THC A8-THC A8-THCV	LOD (%) 0.0009 0.0018 0.0006 0.0004 0.0002 0.0005 0.0005 0.0005 0.0005 0.0012 0.0012 0.0012 0.0012 0.0012 0.0005 0.0012 0.0005 0.0005 0.0012 0.0005 0.0012 0.0005 0.0012 0.0005 0.0012 0.0005 0.0012 0.0005 0.0012 0.0012 0.0005 0.0012 0	5 0. 1 0. 5 0. 3 0. 3 0. 3 0. 3 0. 3 0. 3 0. 3 0. 3 0. 7 0. 9 0. 2 0. 4 0. 5 0. 7 0. 7 0. 7 0. 7 0. 7 0. 7 0. 7 0. 7 0. 7 0.	(%) 00284 00543 00042 0018 00242 0018 00147 00147 00335 000169 00181 00054 0.002 0.002 0.002 0.00312 0.002	(%) ND ND ND ND ND ND ND ND ND ND	Result (mg/unit) ND ND ND <loq< td=""> ND <loq< td=""> ND 0.133 ND 227 0.167 89.2 0.258</loq<></loq<>
Analyte EBC EBCA EBCV EBD EBDA EBDV EBDV EBDVA EBC EBCA EBLA EBLA EBLA EBLA EBNA EBT A4,8-iso-THC A8-THC A8-THCV A9-THC	LOD (%) 0.0009 0.0018 0.0006 0.0004 0.0002 0.0005 0.0005 0.0005 0.0005 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0005 0.0006 0.0012 0.0006 0.0016 0.0006 0.0010 0.0010 0.0006	5 0. 1 0. 5 0. 3 0. 3 0. 3 0. 3 0. 3 0. 3 0. 3 0. 3 0. 7 0. 9 0. 2 0. 4 0. 5 0. 7 0. 7 0. 7 0. 7 0. 7 0. 6 0. 7 0. 6 0. 7 0. 6 0.	(%) 00284 00543 00042 00018 00242 0018 00172 00147 00335 000169 000181 00054 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002	(%) ND ND ND ND ND ND ND ND ND ND	Result (mg/unit) ND ND ND <loq< td=""> ND <loq< td=""> ND 0.133 ND ND 2.27 0.167 89.2 0.258 9.26</loq<></loq<>
Analyte BC BCA BCA BCV BDA BDA BDA BDV BDVA BDV BDVA BC BCA BL BLA BLA BNA BNA BT 44,8-iso-THC 8-iso-THC 8-THC 9-THC 9-THCA	LOD (%) 0.0009 0.0018 0.0006 0.0008 0.0004 0.0002 0.0005 0.0005 0.0005 0.0005 0.0005 0.0012 0.0012 0.0012 0.0012 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006	5 0. 1 0. 5 0. 3 0. 3 0. 3 0. 3 0. 7 0. 9 0. 2 0. 4 0. 5 0. 7 0. 7 0. 7 0. 7 0. 6 0. 7 0. 7 0. 6 0. 7 0. 7 0. 6 0. 4 0.	(%) 00284 00543 00018 00242 0013 00182 00063 00172 00147 00335 00071 000169 000181 00054 0.0021	(%) ND ND ND ND ND ND ND ND ND ND	Result (mg/unit) ND ND ND <loq< td=""> ND <loq< td=""> ND 0.133 ND ND 2.27 0.167 89.2 0.258 9.26 ND</loq<></loq<>
Analyte EBC EBCA EBCV EBD EBDA EBDV EBDV EBDVA EBC EBCA EBLA EBLA EBLA EBNA EBNA EBT A4,8-iso-THC A8-THC A8-THCV A9-THCV A9-THCA A9-THCV	LOD (%) 0.0009 0.0018 0.0006 0.0008 0.0004 0.0002 0.0005 0.0005 0.0005 0.0005 0.0012 0.0012 0.0012 0.0012 0.0012 0.0005 0.0012 0.0005 0.0006 0.0012 0.0007 0.0012 0.0006 0.0012 0.0006 0.0012 0.0006 0.0012 0.0006 0.0012 0.0007 0	5 0. 1 0. 5 0. 3 0. 3 0. 3 0. 3 0. 3 0. 3 0. 7 0. 9 0. 2 0. 4 0. 5 0. 7 0. 7 0. 6 0. 7 0. 7 0. 6 0. 7 0. 9 0.	(%) 00284 00543 00018 00242 0018 00147 00147 00335 000169 000181 00054 00054 0.002 000312 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.0021 0.00251 0.00266	(%) ND ND ND ND ND ND ND ND ND ND	Result (mg/unit) ND ND ND <loq< td=""> ND <loq< td=""> ND 227 0.167 89.2 0.258 9.26 ND ND</loq<></loq<>
Analyte BC BC BCA BCV BD BDA BDV BDV BDV BDVA BC BC BC BCA BL BLA BLA BLA BLA BLA BLA BLA BLA BLA	LOD (%) 0.0009 0.0018 0.0006 0.0004 0.0002 0.0005 0.0005 0.0005 0.0005 0.0005 0.0012 0.0012 0.0012 0.0012 0.0005 0.0006 0.0012 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006	5 0. 1 0. 5 0. 3 0. 3 0. 3 0. 7 0. 9 0. 2 0. 7 0. 7 0. 7 0. 6 0. 7 0. 7 0. 9 0. 2 0.	(%) 00284 00543 00018 00242 0013 00182 00063 00172 00147 00335 00071 000169 000181 00054 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.0027 0.00266 .00186	(%) ND ND ND ND ND ND ND ND ND ND	Result (mg/unit) ND ND ND ND <loq< td=""> ND 0.133 ND ND 227 0.167 89.2 0.258 9.26 ND ND ND ND</loq<>
Cannabinoids by	LOD (%) 0.0009 0.0018 0.0006 0.0008 0.0004 0.0002 0.0005 0.0005 0.0005 0.0005 0.0012 0.0012 0.0012 0.0012 0.0012 0.0005 0.0012 0.0005 0.0006 0.0012 0.0007 0.0012 0.0006 0.0012 0.0007 0.0012 0.0006 0.0012 0.0006 0.0012 0.0007 0	5 0. 1 0. 5 0. 3 0. 3 0. 3 0. 7 0. 9 0. 2 0. 7 0. 7 0. 7 0. 6 0. 7 0. 7 0. 9 0. 2 0.	(%) 00284 00543 00018 00242 0018 00147 00147 00335 000169 000181 00054 00054 0.002 000312 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.0021 0.00251 0.00266	(%) ND ND ND ND ND ND ND ND ND ND	Result (mg/unit) ND ND ND <loq< td=""> ND <loq< td=""> ND 227 0.167 89.2 0.258 9.26 ND ND</loq<></loq<>

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; RL = Reporting Limit; Δ = Delta; Total Δ 9-THC = Δ 9-THCA * 0.877 + Δ 9-THC; Total CBD = CBDA * 0.877 + CBD;

Generated By: Ryan Bellone CCO Date: 01/23/2025

Tested By: Scott Caudill Laboratory Manager Date: 01/23/2025

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

2 of 7

Urb 100mg D8/D9 Blue Watermelon

Sample ID: SA-250113-5 Batch: 011025BW Type: Finished Product Matrix: Edible - Gumm Unit Mass (g): 4.16279	- Ingestible	Received: 01/14/2025 Completed: 01/23/2025	Client Urb 5511 95th Kenosha, USA	
Heavy Metals	by ICP-MS	LOQ (ppm)	Result (ppm)	P/F
Arsenic	0.002	0.02	ND	P
Cadmium	0.001	0.02	ND	P
Lead	0.002	0.02	<loq< td=""><td>Р</td></loq<>	Р
Mercury	0.012	0.05	ND	P

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit; Values over action limits may be estimates

Generated By: Ryan Bellone CCO Date: 01/23/2025

Tested By: Chris Farman

ested By: Chris Farmar Scientist Date: 01/17/2025

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

3 of 7

Urb 100mg D8/D9 Blue Watermelon

Sample ID: SA-250113-55120 Batch: 011025BW Type: Finished Product - Ingestible Matrix: Edible - Cummy Unit Mass (g): 4.16279

Received: 01/14/2025 Completed: 01/23/2025 Client Urb 5511 95th Ave Kenosha, WI 53144 USA

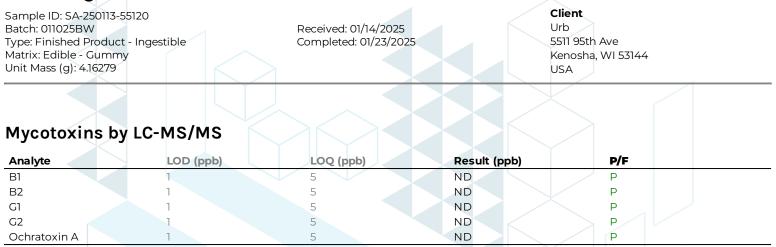
Pesticides by LC-MS/MS and GC-MS/MS

Analyte	LOD (ppb)	LOQ (ppb)	Result (ppb)	P/F	Analyte	LOD (ppb)	LOQ (ppb)	Result (ppb)	P/F
Abamectin	30	100	ND	Ρ	Hexythiazox	30	100	ND	Ρ
Acephate	30	100	ND	Ρ	Imazalil	30	100	ND	Ρ
Acetamiprid	30	100	ND	Р	Imidacloprid	30	100	ND	Ρ
Aldicarb	30	100	ND	Р	Kresoxim methyl	30	100	ND	Ρ
Azoxystrobin	30	100	ND	Р	Malathion	30	100	ND	Ρ
Bifenazate	30	100	ND	Р	Metalaxyl	30	100	ND	Ρ
Bifenthrin	30	100	ND	Р	Methiocarb	30	100	ND	Ρ
Boscalid	30	100	ND	Р	Methomyl	30	100	ND	Ρ
Carbaryl	30	100	ND	Ρ	Mevinphos	30	100	ND	Ρ
Carbofuran	30	100	ND	Р	Myclobutanil	30	100	ND	Ρ
Chloranthraniliprole	30	100	ND	Р	Naled	30	100	ND	Ρ
Chlorfenapyr	30	100	ND	Р	Oxamyl	30	100	ND	Ρ
Chlorpyrifos	30	100	ND	Р	Paclobutrazol	30	100	ND	Ρ
Clofentezine	30	100	ND	Р	Permethrin	30	100	ND	Ρ
Coumaphos	30	100	ND	Р	Phosmet	30	100	ND	Ρ
Cypermethrin	30	100	ND	Р	Piperonyl Butoxide	30	100	ND	Ρ
Daminozide	30	100	ND	Р	Propiconazole	30	100	ND	Ρ
Diazinon	30	100	ND	Р	Propoxur	30	100	ND	Ρ
Dichlorvos	30	100	ND	Р	Pyrethrins	30	100	ND	Ρ
Dimethoate	30	100	ND	Р	Pyridaben	30	100	ND	Ρ
Dimethomorph	30	100	ND	Р	Spinetoram	30	100	ND	Ρ
Ethoprophos	30	100	ND	Р	Spinosad	30	100	ND	Ρ
Etofenprox	30	100	ND	Р	Spiromesifen	30	100	ND	Ρ
Etoxazole	30	100	ND	Р	Spirotetramat	30	100	ND	Ρ
Fenhexamid	30	100	ND	Р	Spiroxamine	30	100	ND	Ρ
Fenoxycarb	30	100	ND	P	Tebuconazole	30	100	ND	Ρ
Fenpyroximate	30	100	ND	Р	Thiacloprid	30	100	ND	Ρ
Fipronil	30	100	ND	P	Thiamethoxam	30	100	ND	Ρ
Flonicamid	30	100	ND	Р	Trifloxystrobin	30	100	ND	Ρ
Fludioxonil	30	100	ND	Р					

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit; Values over action limits may be estimates

Generated By: Ryan Bellone CCO Date: 01/23/2025

Tested By: Anthony Mattingly Scientist Date: 01/22/2025



+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

4 of 7

Urb 100mg D8/D9 Blue Watermelon

kca

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit; Values over action limits may be estimates

Generated By: Ryan Bellone CCO Date: 01/23/2025

Tested By: Anthony Mattingly Scientist

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

5 of 7

Urb 100mg D8/D9 Blue Watermelon

Sample ID: SA-250113-55120 Batch: 011025BW Type: Finished Product - Ingestible Matrix: Edible - Gummy Unit Mass (g): 4.16279		ed: 01/14/2025 oted: 01/23/2025	Client Urb 5511 95th Ave Kenosha, WI 53144 USA	4
Microbials by PCR and Pla	ating LOD (CFU/g)	Result (CFU/g)	Result (Qualitative)	P/F
		Result (CFU/g)	Result (Qualitative)	P/F
Analyte	LOD (CFU/g)		Result (Qualitative)	-
Analyte Total aerobic count	LOD (CFU/g) 10	ND	Result (Qualitative)	P
Analyte Total aerobic count Total coliforms	LOD (CFU/g) 10 10	ND ND	Result (Qualitative)	P P

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; CFU = Colony Forming Units; P = Pass; F = Fail; RL = Reporting Limit

Generated By: Ryan Bellone CCO Date: 01/23/2025

Tested By: Sara Cook

Laboratory Technician Date: 01/17/2025

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

6 of 7

Urb 100mg D8/D9 Blue Watermelon

Sample ID: SA-250113-55120 Batch: 011025BW Type: Finished Product - Ingestible Matrix: Edible - Gummy Unit Mass (g): 4.16279

Received: 01/14/2025 Completed: 01/23/2025 Client Urb 5511 95th Ave Kenosha, WI 53144 USA

Residual Solvents by HS-GC-MS

	LOD	LOQ	Result			LOD	LOQ	Result	
Analyte	(ppm)	(ppm)	(ppm)	P/F	Analyte	(ppm)	(ppm)	(ppm)	P/F
Acetone	167	500	ND	Р	Ethylene Oxide	0.5	1	ND	Р
Acetonitrile	14	41	ND	Ρ	Heptane	167	500	ND	Ρ
Benzene	0.5	1	ND	Ρ	n-Hexane	10	29	ND	Ρ
Butane	167	500	ND	Р	Isobutane	167	500	ND	Ρ
1-Butanol	167	500	ND	Р	Isopropyl Acetate	167	500	ND	Ρ
2-Butanol	167	500	ND	Р	Isopropyl Alcohol	167	500	ND	Ρ
2-Butanone	167	500	ND	Ρ	Isopropylbenzene	167	500	ND	Р
Chloroform	2	6	ND	Р	Methanol	100	300	ND	Р
Cyclohexane	129	388	ND	Р	2-Methylbutane	10	29	ND	Р
1,2-Dichloroethane	0.5	1	ND	Ρ	Methylene Chloride	20	60	ND	Р
1,2-Dimethoxyethane	4	10	ND	Р	2-Methylpentane	10	29	ND	Р
Dimethyl Sulfoxide	167	500	ND	Р	3-Methylpentane	10	29	ND	Ρ
N,N-Dimethylacetamide	37	109	ND	Р	n-Pentane	167	500	ND	Ρ
2,2-Dimethylbutane	10	29	ND	Р	1-Pentanol	167	500	ND	Ρ
2,3-Dimethylbutane	10	29	ND	Р	n-Propane	167	500	ND	Ρ
N,N-Dimethylformamide	30	88	ND	Р	1-Propanol	167	500	ND	Ρ
2,2-Dimethylpropane	167	500	ND	Р	Pyridine	7	20	ND	Ρ
1,4-Dioxane	13	38	ND	Р	Tetrahydrofuran	24	72	ND	Ρ
Ethanol	167	500	ND	Р	Toluene	30	89	ND	Ρ
2-Ethoxyethanol	6	16	ND	Р	Trichloroethylene	3	8	ND	Ρ
Ethyl Acetate	167	500	ND	Р	Xylenes (o-, m-, and p-)	73	217	ND	Р
Ethyl Ether	167	500	ND	Р					
Ethylbenzene	3	7	ND	Р					

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; P = Pass; F = Fail; RL = Reporting Limit; Values over action limits may be estimates

Generated By: Ryan Bellone CCO Date: 01/23/2025

Tested By: Kelsey Rogers Scientist

Date: 01/23/2025 Date: 01/17/2025 Date:

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

Pesticides - CA DCC

7 of 7

Urb 100mg D8/D9 Blue Watermelon

Sample ID: SA-250113-55120 Batch: 011025BW Type: Finished Product - Ingestible Matrix: Edible - Gummy Unit Mass (g): 4.16279

Received: 01/14/2025 Completed: 01/23/2025

Client Urb

5511 95th Ave Kenosha, WI 53144 USA

Reporting Limit Appendix

Heavy Metals - KY 902 KAR 45:190

Analyte	Limit (pp	m) Analyte	Limit (ppm)
Arsenic	1.5	Lead	0.5
Cadmium	0.5	Mercury	1.5

Microbials -

Analyte	Limit (CFU/ g) Analyte	Limit (CFU/ g)
Total coliforms	100 Total aerobic count	10000

Residual Solvents - USP 467

Analyte	Limit (ppm)	Analyte	Limit (ppm)
Acetone	5000	Ethylene Oxide	1
Acetonitrile	410	Heptane	5000
Benzene	2	n-Hexane	290
Butane	5000	Isobutane	5000
1-Butanol	5000	Isopropyl Acetate	5000
2-Butanol	5000	Isopropyl Alcohol	5000
2-Butanone	5000	Isopropylbenzene	5000
Chloroform	60	Methanol	3000
Cyclohexane	3880	2-Methylbutane	290
1,2-Dichloroethane	5	Methylene Chloride	600
1,2-Dimethoxyethane	100	2-Methylpentane	290
Dimethyl Sulfoxide	5000	3-Methylpentane	290
N,N-Dimethylacetamide	1090	n-Pentane	5000
2,2-Dimethylbutane	290	1-Pentanol	5000
2,3-Dimethylbutane	290	n-Propane	5000
N,N-Dimethylformamide	880	1-Propanol	5000
2,2-Dimethylpropane	5000	Pyridine	200
1,4-Dioxane	380	Tetrahydrofuran	720
Ethanol	5000	Toluene	890
2-Ethoxyethanol	160	Trichloroethylene	80
Ethyl Acetate	5000	Xylenes (o-, m-, and p-)	2170
Ethyl Ether	5000		
Ethylbenzene	70		

Pesticides	- CA DCC
------------	----------

Analyte	Limit (ppb)	Analyte	Limit (ppb)
Abamectin	300	Hexythiazox	2000
Acephate	5000	Imazalil	30

Analyte Acetamiprid Aldicarb Azoxystrobin Bifenazate Bifentrin	Limit (ppb) 5000 30 40000 5000 5000	Analyte Imidacloprid Kresoxim methyl Malathion Metalaxyl Methiocarb	Limit (ppb) 3000 1000 5000 15000
Aldicarb Azoxystrobin Bifenazate	30 40000 5000 500	Kresoxim methyl Malathion Metalaxyl	1000 5000
Azoxystrobin Bifenazate	40000 5000 500	Malathion Metalaxyl	5000
Bifenazate	5000 500	Metalaxyl	
	500		15000
Rifonthrin		Methiocarb	10000
Silenumi	10000	incanocarb	30
Boscalid	10000	Methomyl	100
Carbaryl	500	Mevinphos	30
Carbofuran	30	Myclobutanil	9000
Chloranthraniliprole	40000	Naled	500
Chlorfenapyr	30	Oxamyl	200
Chlorpyrifos	30	Paclobutrazol	30
Clofentezine	500	Permethrin	20000
Coumaphos	30	Phosmet	200
Cypermethrin	1000	Piperonyl Butoxide	8000
Daminozide	30	Propiconazole	20000
Diazinon	200	Propoxur	30
Dichlorvos	30	Pyrethrins	1000
Dimethoate	30	Pyridaben	3000
Dimethomorph	20000	Spinetoram	3000
Ethoprophos	30	Spinosad	3000
Etofenprox	30	Spiromesifen	12000
Etoxazole	1500	Spirotetramat	13000
Fenhexamid	10000	Spiroxamine	30
Fenoxycarb	30	Tebuconazole	2000
enpyroximate	2000	Thiacloprid	30
Fipronil	30	Thiamethoxam	4500
Ionicamid	2000	Trifloxystrobin	30000
Iudioxonil	30000		

Mycotoxins - Colorado CDPHE

Analyte	Limit (ppb) Analyte	Limit (ppb)
B1	5 B2	5
G1	5 G2	5
Ochratoxin A	5	

